MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
98
98
Part of
2006 Today's Calculation Of Integral
Problems
(1)
Today's calculation of integral 98
Source: created by kunny
2/16/2006
Let
I
n
=
∫
1
1
+
1
n
{
[
(
x
+
1
)
ln
x
+
1
]
e
x
(
e
x
ln
x
+
1
)
+
n
}
d
x
(
n
=
1
,
2
,
⋯
)
.
{{ \ I_n=\int_1^{1+\frac{1}{n}}\{[(x+1)\ln x+1]}e^{x(e^{x}\ln x+1)}}+n\}dx \ (n=1,2,\cdots).
I
n
=
∫
1
1
+
n
1
{[(
x
+
1
)
ln
x
+
1
]
e
x
(
e
x
l
n
x
+
1
)
+
n
}
d
x
(
n
=
1
,
2
,
⋯
)
.
Evaluate
lim
n
→
∞
I
n
n
.
{\lim_{n\to\infty}I_n^{n}}.
lim
n
→
∞
I
n
n
.
calculus
integration
logarithms
limit
calculus computations