For real constant numbers a, b, c, d, consider the function f(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d such that f( \minus{} 1) \equal{} 0,\ f(1) \equal{} 0,\ f(x)\geq 1 \minus{} |x| for ∣x∣≤1.
Find f(x) for which \int_{ \minus{} 1}^1 \{f'(x) \minus{} x\}^2\ dx is minimized. calculusintegrationfunctioncalculus computations