In the x \minus{} y plane, let l be the tangent line at the point A(2a, 23b) on the ellipse \frac {x^2}{a^2} \plus{} \frac {y^2}{b^2}\equal{}1\ (0 < b < 1 < a). Let denote S be the area of the figure bounded by l, the x axis and the ellipse.
(1) Find the equation of l.
(2) Express S in terms of a, b.
(3) Find the maximum value of S with the constraint a^2 \plus{} 3b^2 \equal{} 4. calculusintegrationconicsellipsegeometrytrigonometrycalculus computations