MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2012 Today's Calculation Of Integral
789
789
Part of
2012 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 789
Source: 2012 Waseda University entrance exam/Commerce
2/22/2012
Find the non-constant function
f
(
x
)
f(x)
f
(
x
)
such that
f
(
x
)
=
x
2
−
∫
0
1
(
f
(
t
)
+
x
)
2
d
t
.
f(x)=x^2-\int_0^1 (f(t)+x)^2dt.
f
(
x
)
=
x
2
−
∫
0
1
(
f
(
t
)
+
x
)
2
d
t
.
calculus
integration
function
calculus computations