MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2012 Today's Calculation Of Integral
815
815
Part of
2012 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 815
Source: 196? Nara Medical College entrance exam
5/16/2012
Prove that :
∣
∑
i
=
0
n
(
1
−
π
sin
i
π
4
n
cos
i
π
4
n
)
∣
<
1.
\left|\sum_{i=0}^n \left(1-\pi \sin \frac{i\pi}{4n}\cos \frac{i\pi}{4n}\right)\right|<1.
∑
i
=
0
n
(
1
−
π
sin
4
n
iπ
cos
4
n
iπ
)
<
1.
calculus
integration
trigonometry
function
calculus computations