MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Junior Mathematics Olympiad
2007 Korea Junior Math Olympiad
4
4
Part of
2007 Korea Junior Math Olympiad
Problems
(1)
3 perpendicular bisectors and 6 concyclic points given, collinear wanted
Source: KJMO 2007 p4
4/30/2019
Let
P
P
P
be a point inside
△
A
B
C
\triangle ABC
△
A
BC
. Let the perpendicular bisectors of
P
A
,
P
B
,
P
C
PA,PB,PC
P
A
,
PB
,
PC
be
ℓ
1
,
ℓ
2
,
ℓ
3
\ell_1,\ell_2,\ell_3
ℓ
1
,
ℓ
2
,
ℓ
3
. Let
D
=
ℓ
1
∩
ℓ
2
D =\ell_1 \cap \ell_2
D
=
ℓ
1
∩
ℓ
2
,
E
=
ℓ
2
∩
ℓ
3
E=\ell_2 \cap \ell_3
E
=
ℓ
2
∩
ℓ
3
,
F
=
ℓ
3
∩
ℓ
1
F=\ell_3 \cap \ell_1
F
=
ℓ
3
∩
ℓ
1
. If
A
,
B
,
C
,
D
,
E
,
F
A,B,C,D,E,F
A
,
B
,
C
,
D
,
E
,
F
lie on a circle, prove that
C
,
P
,
D
C, P,D
C
,
P
,
D
are collinear.
geometry
perpendicular bisector
Concyclic
collinear