MathDB
Problems
Contests
National and Regional Contests
Kosovo Contests
Kosovo Team Selection Test
2011 Kosovo Team Selection Test
1
1
Part of
2011 Kosovo Team Selection Test
Problems
(1)
Cyclic inequality (KSV IMO TST Question 1)
Source:
4/25/2011
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be real positive numbers. Prove that the following inequality holds: { \sum_{\rm cyc}\sqrt{5a^2+5c^2+8b^2\over 4ac}\ge 3\cdot \root 9 \of{8(a+b)^2(b+c)^2(c+a)^2\over (abc)^2} }
inequalities
inequalities unsolved