MathDB
Problems
Contests
National and Regional Contests
Malaysia Contests
JOM Shortlists
JOM 2015 Shortlist
A4
A4
Part of
JOM 2015 Shortlist
Problems
(1)
Sequence
Source: Junior Olympiad of Malaysia Shortlist 2015 A4
7/17/2015
Suppose
2015
=
a
1
<
a
2
<
a
3
<
⋯
<
a
k
2015= a_1 <a_2 < a_3<\cdots <a_k
2015
=
a
1
<
a
2
<
a
3
<
⋯
<
a
k
be a finite sequence of positive integers, and for all
m
,
n
∈
N
m, n \in \mathbb{N}
m
,
n
∈
N
and
1
≤
m
,
n
≤
k
1\le m,n \le k
1
≤
m
,
n
≤
k
,
a
m
+
a
n
≥
a
m
+
n
+
∣
m
−
n
∣
a_m+a_n\ge a_{m+n}+|m-n|
a
m
+
a
n
≥
a
m
+
n
+
∣
m
−
n
∣
Determine the largest possible value
k
k
k
can obtain.
algebra
number theory