MathDB
Problems
Contests
National and Regional Contests
Malaysia Contests
JOM Shortlists
JOM 2015 Shortlist
A6
A6
Part of
JOM 2015 Shortlist
Problems
(1)
Two Sequences
Source: Junior Olympiad of Malaysia Shortlist 2015 A6
7/17/2015
Let
(
a
n
)
n
≥
0
(a_{n})_{n\ge 0}
(
a
n
)
n
≥
0
and
(
b
n
)
n
≥
0
(b_{n})_{n\ge 0}
(
b
n
)
n
≥
0
be two sequences with arbitrary real values
a
0
,
a
1
,
b
0
,
b
1
a_0, a_1, b_0, b_1
a
0
,
a
1
,
b
0
,
b
1
. For
n
≥
1
n\ge 1
n
≥
1
, let
a
n
+
1
,
b
n
+
1
a_{n+1}, b_{n+1}
a
n
+
1
,
b
n
+
1
be defined in this way:
a
n
+
1
=
b
n
−
1
+
b
n
2
,
b
n
+
1
=
a
n
−
1
+
a
n
2
a_{n+1}=\dfrac{b_{n-1}+b_{n}}{2}, b_{n+1}=\dfrac{a_{n-1}+a_{n}}{2}
a
n
+
1
=
2
b
n
−
1
+
b
n
,
b
n
+
1
=
2
a
n
−
1
+
a
n
Prove that for any constant
c
>
0
c>0
c
>
0
there exists a positive integer
N
N
N
s.t. for all
n
>
N
n>N
n
>
N
,
∣
a
n
−
b
n
∣
<
c
|a_{n}-b_{n}|<c
∣
a
n
−
b
n
∣
<
c
.
algebra