MathDB
Problems
Contests
National and Regional Contests
Malaysia Contests
JOM Shortlists
JOM 2015 Shortlist
C3
C3
Part of
JOM 2015 Shortlist
Problems
(1)
2 Functions
Source: Junior Olympiad of Malaysia Shortlist 2015 C3
7/17/2015
Let
n
≥
2
n\ge 2
n
≥
2
be a positive integer and
S
=
{
1
,
2
,
⋯
,
n
}
S= \{1,2,\cdots ,n\}
S
=
{
1
,
2
,
⋯
,
n
}
. Let two functions
f
:
S
→
{
1
,
−
1
}
f:S \rightarrow \{1,-1\}
f
:
S
→
{
1
,
−
1
}
and
g
:
S
→
S
g:S \rightarrow S
g
:
S
→
S
satisfy:i)
f
(
x
)
f
(
y
)
=
f
(
x
+
y
)
,
∀
x
,
y
∈
S
f(x)f(y)=f(x+y) , \forall x,y \in S
f
(
x
)
f
(
y
)
=
f
(
x
+
y
)
,
∀
x
,
y
∈
S
\\ ii)
f
(
g
(
x
)
)
=
f
(
x
)
,
∀
x
∈
S
f(g(x))=f(x) , \forall x \in S
f
(
g
(
x
))
=
f
(
x
)
,
∀
x
∈
S
\\ iii)
f
(
x
+
n
)
=
f
(
x
)
,
∀
x
∈
S
f(x+n)=f(x) ,\forall x \in S
f
(
x
+
n
)
=
f
(
x
)
,
∀
x
∈
S
\\ iv)
g
g
g
is bijective.\\Find the number of pair of such functions
(
f
,
g
)
(f,g)
(
f
,
g
)
for every
n
n
n
.
function
combinatorics