MathDB
Problems
Contests
National and Regional Contests
Mathlinks Contests.
MathLinks Contest 6th
5.2
5.2
Part of
MathLinks Contest 6th
Problems
(1)
0652 algebra 6th edition Round 5 p2
Source:
5/3/2021
Let
n
≥
5
n \ge 5
n
≥
5
be an integer and let
x
1
,
x
2
,
.
.
.
,
x
n
x_1, x_2, ... , x_n
x
1
,
x
2
,
...
,
x
n
be
n
n
n
distinct integer numbers such that no
3
3
3
of them can be in arithmetic progression. Prove that if for all
1
≤
i
,
j
≤
n
1 \le i, j \le n
1
≤
i
,
j
≤
n
we have
2
∣
x
i
−
x
j
∣
≤
n
(
n
−
1
)
2|x_i - x_j | \le n(n - 1)
2∣
x
i
−
x
j
∣
≤
n
(
n
−
1
)
then there exist
4
4
4
distinct indices
i
,
j
,
k
,
l
∈
{
1
,
2
,
.
.
.
,
n
}
i, j, k, l \in \{1, 2, ... , n\}
i
,
j
,
k
,
l
∈
{
1
,
2
,
...
,
n
}
such that
x
i
+
x
j
=
x
k
+
x
l
.
x_i + x_j = x_k + x_l.
x
i
+
x
j
=
x
k
+
x
l
.
algebra
6th edition