MathDB
Problems
Contests
National and Regional Contests
Mathlinks Contests.
MathLinks Contest 6th
7.2
7.2
Part of
MathLinks Contest 6th
Problems
(1)
0672 geometry 6th edition Round 7 p2
Source:
5/3/2021
Let
A
B
C
D
ABCD
A
BC
D
be a cyclic quadrilateral. Let
M
,
N
M, N
M
,
N
be the midpoints of the diagonals
A
C
AC
A
C
and
B
D
BD
B
D
and let
P
P
P
be the midpoint of
M
N
MN
MN
. Let
A
′
,
B
′
,
C
′
,
D
′
A',B',C',D'
A
′
,
B
′
,
C
′
,
D
′
be the intersections of the rays
A
P
AP
A
P
,
B
P
BP
BP
,
C
P
CP
CP
and
D
P
DP
D
P
respectively with the circumcircle of the quadrilateral
A
B
C
D
ABCD
A
BC
D
.Find, with proof, the value of the sum
σ
=
A
P
P
A
′
+
B
P
P
B
′
+
C
P
P
C
′
+
D
P
P
D
′
.
\sigma = \frac{ AP}{PA'} + \frac{BP}{PB'} + \frac{CP}{PC'} + \frac{DP}{PD'} .
σ
=
P
A
′
A
P
+
P
B
′
BP
+
P
C
′
CP
+
P
D
′
D
P
.
geometry
6th edition