MathDB
Problems
Contests
National and Regional Contests
Mexico Contests
Mexico National Olympiad
1993 Mexico National Olympiad
6
6
Part of
1993 Mexico National Olympiad
Problems
(1)
odd prime: p \n(n+1)(n+2)(n+3)+1 for n iff p \ (m^2 - 5) for m
Source: Mexican Mathematical Olympiad 1993 OMM P6
7/29/2018
p
p
p
is an odd prime. Show that
p
p
p
divides
n
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
+
1
n(n+1)(n+2)(n+3) + 1
n
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
+
1
for some integer
n
n
n
iff
p
p
p
divides
m
2
ā
5
m^2 - 5
m
2
ā
5
for some integer
m
m
m
.
number theory
prime
Divisibility