MathDB
Problems
Contests
National and Regional Contests
Mexico Contests
Mexico National Olympiad
2021 Mexico National Olympiad
5
5
Part of
2021 Mexico National Olympiad
Problems
(1)
$n=\overline{a_1a_2\cdots a_{k-1}a_k}$
Source: Mexico National 2021 P5
11/11/2021
If
n
=
a
1
a
2
⋯
a
k
−
1
a
k
‾
n=\overline{a_1a_2\cdots a_{k-1}a_k}
n
=
a
1
a
2
⋯
a
k
−
1
a
k
, be
s
(
n
)
s(n)
s
(
n
)
such that . If
k
k
k
is even,
s
(
n
)
=
a
1
a
2
‾
+
a
3
a
4
‾
⋯
+
a
k
−
1
a
k
‾
s(n)=\overline{a_1a_2}+\overline{a_3a_4}\cdots+\overline{a_{k-1}a_k}
s
(
n
)
=
a
1
a
2
+
a
3
a
4
⋯
+
a
k
−
1
a
k
. If
k
k
k
is odd,
s
(
n
)
=
a
1
+
a
2
a
3
‾
⋯
+
a
k
−
1
a
k
‾
s(n)=a_1+\overline{a_2a_3}\cdots+\overline{a_{k-1}a_k}
s
(
n
)
=
a
1
+
a
2
a
3
⋯
+
a
k
−
1
a
k
For example
s
(
123
)
=
1
+
23
=
24
s(123)=1+23=24
s
(
123
)
=
1
+
23
=
24
and
s
(
2021
)
=
20
+
21
=
41
s(2021)=20+21=41
s
(
2021
)
=
20
+
21
=
41
Be
n
n
n
is
d
i
g
i
t
a
l
digital
d
i
g
i
t
a
l
if
s
(
n
)
s(n)
s
(
n
)
is a divisor of
n
n
n
. Prove that among any 198 consecutive positive integers, all of them less than 2000021 there is one of them that is
d
i
g
i
t
a
l
digital
d
i
g
i
t
a
l
.
number theory