MathDB
Problems
Contests
National and Regional Contests
Netherlands Contests
Dutch Mathematical Olympiad
1963 Dutch Mathematical Olympiad
3
3
Part of
1963 Dutch Mathematical Olympiad
Problems
(1)
a_1+a_2+...+a_{20}=1518, a_k >= 7k , for k = 1,2,..., 20
Source: Netherlands - Dutch NMO 1963 p3
1/31/2023
Twenty numbers
a
1
,
a
2
,
.
.
,
a
20
a_1,a_2,..,a_{20}
a
1
,
a
2
,
..
,
a
20
satisfy:
a
k
≥
7
k
f
o
r
k
=
1
,
2
,
.
.
.
,
20
a_k \ge 7k \,\,\,\,\, for \,\,\,\,\, k = 1,2,..., 20
a
k
≥
7
k
f
or
k
=
1
,
2
,
...
,
20
a
1
+
a
2
+
.
.
.
+
a
20
=
1518
a_1+a_2+...+a_{20}=1518
a
1
+
a
2
+
...
+
a
20
=
1518
Prove that among the numbers
k
=
1
,
2
,
.
.
.
,
20
k = 1,2,... ,20
k
=
1
,
2
,
...
,
20
there are no more than seventeen, for which
a
k
≥
20
k
−
2
k
2
a_k \ge 20k -2k^2
a
k
≥
20
k
−
2
k
2
.
inequalities
Sum
algebra