MathDB
Problems
Contests
National and Regional Contests
Netherlands Contests
Dutch Mathematical Olympiad
1987 Dutch Mathematical Olympiad
2
2
Part of
1987 Dutch Mathematical Olympiad
Problems
(1)
1 <2\sqrt{n} - \sum 1/ \sqrt{k} <2
Source: Netherlands - Dutch MO 1987 p2
12/25/2022
For
x
>
0
x >0
x
>
0
, prove that
1
2
x
+
1
<
x
+
1
−
x
<
1
2
x
\frac{1}{2\sqrt{x+1}}<\sqrt{x+1}-\sqrt{x}<\frac{1}{2\sqrt{x}}
2
x
+
1
1
<
x
+
1
−
x
<
2
x
1
and for all
n
≥
2
n \ge 2
n
≥
2
prove that
1
<
2
n
−
∑
k
=
1
n
1
k
<
2
1 <2\sqrt{n} - \sum_{k=1}^n\frac{1}{\sqrt{k}}<2
1
<
2
n
−
k
=
1
∑
n
k
1
<
2
inequalities
algebra