MathDB
Problems
Contests
National and Regional Contests
Netherlands Contests
Dutch Mathematical Olympiad
2018 Dutch Mathematical Olympiad
4
4
Part of
2018 Dutch Mathematical Olympiad
Problems
(1)
equal segments wanted, old school geometry style
Source: Dutch NMO 2018 p4
9/7/2019
In triangle
A
B
C
,
∠
A
ABC, \angle A
A
BC
,
∠
A
is smaller than
∠
C
\angle C
∠
C
. Point
D
D
D
lies on the (extended) line
B
C
BC
BC
(with
B
B
B
between
C
C
C
and
D
D
D
) such that
∣
B
D
∣
=
∣
A
B
∣
|BD| = |AB|
∣
B
D
∣
=
∣
A
B
∣
. Point
E
E
E
lies on the bisector of
∠
A
B
C
\angle ABC
∠
A
BC
such that
∠
B
A
E
=
∠
A
C
B
\angle BAE = \angle ACB
∠
B
A
E
=
∠
A
CB
. Line segment
B
E
BE
BE
intersects line segment
A
C
AC
A
C
in point
F
F
F
. Point
G
G
G
lies on line segment
A
D
AD
A
D
such that
E
G
EG
EG
and
B
C
BC
BC
are parallel. Prove that
∣
A
G
∣
=
∣
B
F
∣
|AG| =|BF|
∣
A
G
∣
=
∣
BF
∣
.[asy] unitsize (1.5 cm);real angleindegrees(pair A, pair B, pair C) { real a, b, c; a = abs(B - C); b = abs(C - A); c = abs(A - B); return(aCos((a^2 + c^2 - b^2)/(2*a*c))); };pair A, B, C, D, E, F, G;B = (0,0); A = 2*dir(190); D = 2*dir(310); C = 1.5*dir(310 - 180); E = extension(B, incenter(A,B,C), A, rotate(angleindegrees(A,C,B),A)*(B)); F = extension(B,E,A,C); G = extension(E, E + D - B, A, D);filldraw(anglemark(A,C,B,8),gray(0.8)); filldraw(anglemark(B,A,E,8),gray(0.8)); draw(C--A--B); draw(E--A--D); draw(interp(C,D,-0.1)--interp(C,D,1.1)); draw(interp(E,B,-0.2)--interp(E,B,1.2)); draw(E--G);dot("
A
A
A
", A, SW); dot("
B
B
B
", B, NE); dot("
C
C
C
", C, NE); dot("
D
D
D
", D, NE); dot("
E
E
E
", E, N); dot("
F
F
F
", F, N); dot("
G
G
G
", G, SW); [/asy]
geometry
equal segments