MathDB
Problems
Contests
National and Regional Contests
Paraguay Contests
Paraguay Mathematical Olympiad
2006 Paraguay Mathematical Olympiad
5
5
Part of
2006 Paraguay Mathematical Olympiad
Problems
(1)
Problem 5
Source: Paraguayan Mathematical Olympiad 2006
7/22/2015
Let
A
B
C
ABC
A
BC
be a triangle, and let
P
P
P
be a point on side
B
C
BC
BC
such that
B
P
P
C
=
1
2
\frac{BP}{PC}=\frac{1}{2}
PC
BP
=
2
1
. If
∡
A
B
C
\measuredangle ABC
∡
A
BC
=
=
=
4
5
∘
45^{\circ}
4
5
∘
and
∡
A
P
C
\measuredangle APC
∡
A
PC
=
=
=
6
0
∘
60^{\circ}
6
0
∘
, determine
∡
A
C
B
\measuredangle ACB
∡
A
CB
without trigonometry.
geometry