MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN I Problems
10
10
Part of
PEN I Problems
Problems
(1)
I 10
Source:
5/25/2007
Show that for all primes
p
p
p
,
∑
k
=
1
p
−
1
⌊
k
3
p
⌋
=
(
p
+
1
)
(
p
−
1
)
(
p
−
2
)
4
.
\sum^{p-1}_{k=1}\left \lfloor \frac{k^{3}}{p}\right \rfloor =\frac{(p+1)(p-1)(p-2)}{4}.
k
=
1
∑
p
−
1
⌊
p
k
3
⌋
=
4
(
p
+
1
)
(
p
−
1
)
(
p
−
2
)
.
floor function
symmetry