MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1954 Poland - Second Round
6
6
Part of
1954 Poland - Second Round
Problems
(1)
sin (x_1 + x_2 + ...+ x_n) < sin x_1 + sin x_2 + ,,,+ sin x_n
Source: Polish MO second round 1954 p6
8/29/2024
Prove that if
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
are angles between
0
∘
0^\circ
0
∘
and
18
0
∘
180^\circ
18
0
∘
, and
n
n
n
is any natural number greater than
1
1
1
, then
sin
(
x
1
+
x
2
+
…
+
x
n
)
<
sin
x
1
+
sin
x
2
+
…
+
sin
x
n
.
\sin (x_1 + x_2 + \ldots + x_n) < \sin x_1 + \sin x_2 + \ldots + \sin x_n.
sin
(
x
1
+
x
2
+
…
+
x
n
)
<
sin
x
1
+
sin
x
2
+
…
+
sin
x
n
.
inequalities
trigonometry