MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1970 Poland - Second Round
6
6
Part of
1970 Poland - Second Round
Problems
(1)
maximum number of mutually independent subsets of a $2^n $-element set
Source: Polish MO second round 1970 p6
8/28/2024
If
A
A
A
is a subset of
X
X
X
, then we take
A
1
=
A
A^1 = A
A
1
=
A
,
A
−
1
=
X
−
A
A^{-1} = X - A
A
−
1
=
X
−
A
. The subsets
A
1
,
A
2
,
…
,
A
k
A_1, A_2, \ldots, A_k
A
1
,
A
2
,
…
,
A
k
are called mutually independent if the product
A
1
ε
1
∩
A
2
ε
2
…
A
k
ε
k
A_1^{\varepsilon_1} \cap A_2^{\varepsilon_2} \ldots A_k^{\varepsilon_k}
A
1
ε
1
∩
A
2
ε
2
…
A
k
ε
k
is nonempty for every system of numbers
ε
1
,
ε
2
,
…
,
ε
k
\varepsilon_1 , \varepsilon_2, \ldots, \varepsilon_k
ε
1
,
ε
2
,
…
,
ε
k
, such that
∣
ε
2
∣
=
|\varepsilon_2| =
∣
ε
2
∣
=
1 for
i
=
1
,
2
,
…
,
k
i = 1, 2, \ldots, k
i
=
1
,
2
,
…
,
k
. What is the maximum number of mutually independent subsets of a
2
n
2^n
2
n
-element set?
combinatorics
Subsets