MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1973 Poland - Second Round
4
4
Part of
1973 Poland - Second Round
Problems
(1)
x_n = (p + \sqrt{q})^n - [(p + \sqrt{q})^n]
Source: Polish MO Second Round 1973 p4
9/8/2024
Let
x
n
=
(
p
+
q
)
n
−
[
(
p
+
q
)
n
]
x_n = (p + \sqrt{q})^n - [(p + \sqrt{q})^n]
x
n
=
(
p
+
q
)
n
−
[(
p
+
q
)
n
]
for
n
=
1
,
2
,
3
,
…
n = 1, 2, 3, \ldots
n
=
1
,
2
,
3
,
…
. Prove that if
p
p
p
,
q
q
q
are natural numbers satisfying the condition
p
−
1
<
q
<
p
p - 1 < \sqrt{q} < p
p
−
1
<
q
<
p
, then
lim
n
→
∞
x
n
=
1
\lim_{n\to \infty} x_n = 1
lim
n
→
∞
x
n
=
1
.Attention. The symbol
[
a
]
[a]
[
a
]
denotes the largest integer not greater than
a
a
a
.
algebra
limit