MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1974 Poland - Second Round
5
5
Part of
1974 Poland - Second Round
Problems
(1)
t = lim sum_{j=1}^N q^{n_j}.
Source: Polish MO Second Round 1974 p5
9/8/2024
The given numbers are real numbers
q
,
t
∈
⟨
1
2
;
1
)
q,t \in \langle \frac{1}{2}; 1)
q
,
t
∈
⟨
2
1
;
1
)
,
t
∈
(
0
;
1
⟩
t \in (0; 1 \rangle
t
∈
(
0
;
1
⟩
. Prove that there is an increasing sequence of natural numbers
n
k
{n_k}
n
k
(
k
=
1
,
2
,
…
k = 1,2, \ldots
k
=
1
,
2
,
…
) such that
t
=
lim
N
→
∞
∑
j
=
1
N
q
n
j
.
t = \lim_{N\to \infty} \sum_{j=1}^N q^{n_j}.
t
=
N
→
∞
lim
j
=
1
∑
N
q
n
j
.
limit
algebra
Sequence