MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1977 Poland - Second Round
1
1
Part of
1977 Poland - Second Round
Problems
(1)
|x_1c_1 + x_2c_2 +... + x_nc_n| >= |b-a|/2(|c_1|+|c_2|+\ldots+|c_n|)
Source: Polish MO Recond Round 1977 p1
9/9/2024
Let
a
a
a
and
b
b
b
be different real numbers. Prove that for any real numbers
c
1
,
c
2
,
…
,
c
n
c_1, c_2, \ldots,c_n
c
1
,
c
2
,
…
,
c
n
there exists a sequence of
n
n
n
-elements
(
x
i
)
(x_i)
(
x
i
)
, each term of which is equal to one of the numbers
a
a
a
or
b
b
b
such that
∣
x
1
c
1
+
x
2
c
2
+
…
+
x
n
c
n
∣
≥
∣
b
−
a
∣
2
(
∣
c
1
∣
+
∣
c
2
∣
+
…
+
∣
c
n
∣
)
.
|x_1c_1 + x_2c_2 + \ldots + x_nc_n| \geq \frac{|b-a|}{2}(|c_1|+|c_2|+\ldots+|c_n|).
∣
x
1
c
1
+
x
2
c
2
+
…
+
x
n
c
n
∣
≥
2
∣
b
−
a
∣
(
∣
c
1
∣
+
∣
c
2
∣
+
…
+
∣
c
n
∣
)
.
algebra
inequalities