MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1988 Poland - Second Round
2
2
Part of
1988 Poland - Second Round
Problems
(1)
sum x_i > sum y_i if prod x_i >= prod y_i
Source: Polish MO Recond Round 1988 p2
9/9/2024
Given real numbers
x
i
x_i
x
i
,
y
i
y_i
y
i
(
i
=
1
,
2
,
…
,
n
i = 1, 2, \ldots, n
i
=
1
,
2
,
…
,
n
) such that
x
1
≥
x
2
≥
…
≥
x
n
≥
0
,
y
1
>
y
2
>
…
>
y
n
≥
0
,
\qquad x_1 \geq x_2 \geq \ldots \geq x_n \geq 0, \ \ y_1 > y_2 > \ldots > y_n \geq 0,
x
1
≥
x
2
≥
…
≥
x
n
≥
0
,
y
1
>
y
2
>
…
>
y
n
≥
0
,
and
∏
i
=
1
k
x
i
≥
∏
i
=
1
k
y
i
,
for
k
=
1
,
2
,
…
,
n
.
\prod_{i=1}^k x_i \geq \prod_{i=1}^k y_i, \ \ \text{ for } \ \ k=1,2,\ldots, n.
i
=
1
∏
k
x
i
≥
i
=
1
∏
k
y
i
,
for
k
=
1
,
2
,
…
,
n
.
Prove that
∑
i
=
1
n
x
i
>
∑
i
=
1
n
y
i
.
\sum_{i=1}^n x_i > \sum_{i=1}^n y_i.
i
=
1
∑
n
x
i
>
i
=
1
∑
n
y
i
.
algebra
inequalities