MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1994 Poland - Second Round
2
2
Part of
1994 Poland - Second Round
Problems
(1)
\sum_{i=1}^n ai=\Pi_{i=1}^n a_i, 0<a_i \le b_i=>\sum_{i=1}^n bi \le\Pi_{i=1}^n
Source: Polish second round 1994 p2
1/19/2020
Let
a
1
,
.
.
.
,
a
n
a_1,...,a_n
a
1
,
...
,
a
n
be positive real numbers such that
∑
i
=
1
n
a
i
=
∏
i
=
1
n
a
i
\sum_{i=1}^n a_i =\prod_{i=1}^n a_i
∑
i
=
1
n
a
i
=
∏
i
=
1
n
a
i
, and let
b
1
,
.
.
.
,
b
n
b_1,...,b_n
b
1
,
...
,
b
n
be positive real numbers such that
a
i
≤
b
i
a_i \le b_i
a
i
≤
b
i
for all
i
i
i
. Prove that
∑
i
=
1
n
b
i
≤
∏
i
=
1
n
b
i
\sum_{i=1}^n b_i \le\prod_{i=1}^n b_i
∑
i
=
1
n
b
i
≤
∏
i
=
1
n
b
i
Sum
Product
inequalities
algebra