MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1995 Poland - Second Round
4
4
Part of
1995 Poland - Second Round
Problems
(1)
\sum x_i^t \le \sum x_i ^{t+1} if \sum x_i \le \sum x_i ^2
Source: Polish second round 1995 p4
1/19/2020
Positive real numbers
x
1
,
x
2
,
.
.
.
,
x
n
x_1,x_2,...,x_n
x
1
,
x
2
,
...
,
x
n
satisfy the condition
∑
i
=
1
n
x
i
≤
∑
i
=
1
n
x
i
2
\sum_{i=1}^n x_i \le \sum_{i=1}^n x_i ^2
∑
i
=
1
n
x
i
≤
∑
i
=
1
n
x
i
2
. Prove the inequality
∑
i
=
1
n
x
i
t
≤
∑
i
=
1
n
x
i
t
+
1
\sum_{i=1}^n x_i^t \le \sum_{i=1}^n x_i ^{t+1}
∑
i
=
1
n
x
i
t
≤
∑
i
=
1
n
x
i
t
+
1
for all real numbers
t
>
1
t > 1
t
>
1
.
inequalities
algebra
n-variable inequality
Sum