MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1998 Poland - Second Round
1
1
Part of
1998 Poland - Second Round
Problems
(1)
f(f(k)) = g(g(k)) = k , g(f(k)) = k +1, prove or disprove
Source: Polish second round 1999 p1
1/19/2020
Let
A
n
=
{
1
,
2
,
.
.
.
,
n
}
A_n = \{1,2,...,n\}
A
n
=
{
1
,
2
,
...
,
n
}
. Prove or disprove: For all integers
n
≥
2
n \ge 2
n
≥
2
there exist functions
f
,
g
:
A
n
→
A
n
f,g : A_n \to A_n
f
,
g
:
A
n
→
A
n
which satisfy
f
(
f
(
k
)
)
=
g
(
g
(
k
)
)
=
k
f(f(k)) = g(g(k)) = k
f
(
f
(
k
))
=
g
(
g
(
k
))
=
k
for
1
≤
k
≤
n
1 \le k \le n
1
≤
k
≤
n
, and
g
(
f
(
k
)
)
=
k
+
1
g(f(k)) = k +1
g
(
f
(
k
))
=
k
+
1
for
1
≤
k
≤
n
−
1
1 \le k \le n -1
1
≤
k
≤
n
−
1
.
function
composite function
Functional Equations
functional equation
algebra