MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
1993 All-Russian Olympiad Regional Round
11.2
11.2
Part of
1993 All-Russian Olympiad Regional Round
Problems
(1)
8| ](\sqrt{3}{n}+\sqrt{3}{n+2})^3]+1
Source:
8/26/2024
Prove that, for every integer
n
>
2
n > 2
n
>
2
, the number
[
(
n
3
+
n
+
2
3
)
3
]
+
1
\left[\left( \sqrt[3]{n}+\sqrt[3]{n+2}\right)^3\right]+1
[
(
3
n
ā
+
3
n
+
2
ā
)
3
]
+
1
is divisible by
8
8
8
.
number theory
divides
divisible