MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
1995 All-Russian Olympiad Regional Round
11.5
11.5
Part of
1995 All-Russian Olympiad Regional Round
Problems
(1)
cosA+cosB+cosC<=\sqrt5 All-Russian MO 1995 Regional (R4) 11.5
Source:
8/26/2024
Angles
α
,
β
,
γ
\alpha, \beta, \gamma
α
,
β
,
γ
satisfy the inequality
sin
α
+
sin
β
+
sin
γ
≥
2
\sin \alpha +\sin \beta +\sin \gamma \ge 2
sin
α
+
sin
β
+
sin
γ
≥
2
. Prove that
cos
α
+
cos
β
+
cos
γ
≤
5
.
\cos \alpha + \cos \beta +\cos \gamma \le \sqrt5.
cos
α
+
cos
β
+
cos
γ
≤
5
.
algebra
inequalities
trigonometry