MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
1997 All-Russian Olympiad Regional Round
10.3
10.3
Part of
1997 All-Russian Olympiad Regional Round
Problems
(1)
(2^m -1)^2 | 2^n-1 iff m(2^m-1) |n - All-Russian MO 1997 Regional (R4) 10.3
Source:
9/24/2024
Natural numbers
m
m
m
and
n
n
n
are given. Prove that the number
2
n
−
1
2^n-1
2
n
−
1
is divisible by the number
(
2
m
−
1
)
2
(2^m -1)^2
(
2
m
−
1
)
2
if and only if the number
n
n
n
is divisible by the number
m
(
2
m
−
1
)
m(2^m-1)
m
(
2
m
−
1
)
.
number theory
divisible
divides