MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2004 All-Russian Olympiad Regional Round
10.1
10.1
Part of
2004 All-Russian Olympiad Regional Round
Problems
(1)
cosa+cosb+cosc>sina+sinb+sinc- All-Russian MO 2004 Regional (R4) 10.1
Source:
9/27/2024
The sum of positive numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
is equal to
π
/
2
\pi/2
π
/2
. Prove that
cos
a
+
cos
b
+
cos
c
>
sin
a
+
sin
b
+
sin
c
.
\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.
cos
a
+
cos
b
+
cos
c
>
sin
a
+
sin
b
+
sin
c
.
trigonometry
algebra
inequalities