MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2004 All-Russian Olympiad Regional Round
9.7
9.7
Part of
2004 All-Russian Olympiad Regional Round
Problems
(1)
<MNA+<MCB=<MND+<MBC=180^o- All-Russian MO 2004 Regional (R4) 9.7
Source:
9/27/2024
Inside the parallelogram
A
B
C
D
ABCD
A
BC
D
, point
M
M
M
is chosen, and inside the triangle
A
M
D
AMD
A
M
D
, point
N
N
N
is chosen in such a way that
∠
M
N
A
+
∠
M
C
B
=
∠
M
N
D
+
∠
M
B
C
=
18
0
o
.
\angle MNA + \angle MCB =\angle MND + \angle MBC = 180^o.
∠
MN
A
+
∠
MCB
=
∠
MN
D
+
∠
MBC
=
18
0
o
.
Prove that lines
M
N
MN
MN
and
A
B
AB
A
B
are parallel.
parallel
geometry
angles
parallelogram