MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2005 All-Russian Olympiad Regional Round
11.2
11.2
Part of
2005 All-Russian Olympiad Regional Round
Problems
(1)
a+b+c+d = S All-Russian MO 2005 Regional (R4) 11.2
Source:
8/26/2024
It is known that there is a number
S
S
S
such that if
a
+
b
+
c
+
d
=
S
a+b+c+d = S
a
+
b
+
c
+
d
=
S
and
1
a
+
1
b
+
1
c
+
1
d
=
S
\frac{1}{a}+ \frac{1}{b}+ \frac{1}{c}+ \frac{1}{d} = S
a
1
+
b
1
+
c
1
+
d
1
=
S
(
a
,
b
,
c
,
d
(a, b, c, d
(
a
,
b
,
c
,
d
are different from zero and one
)
)
)
, then
1
a
−
1
+
+
1
b
−
1
+
1
c
−
1
+
1
d
−
1
=
S
.
\frac{1}{a- 1} ++ \frac{1}{b- 1} + \frac{1}{c- 1} + \frac{1}{d -1} = S.
a
−
1
1
+
+
b
−
1
1
+
c
−
1
1
+
d
−
1
1
=
S
.
Find
S
S
S
.
algebra