MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2010 All-Russian Olympiad Regional Round
10.6
10.6
Part of
2010 All-Russian Olympiad Regional Round
Problems
(1)
poles and polars candidate
Source: Russian Regional Olympiad 2010 10.6
8/24/2024
The tangent lines to the circle
ω
\omega
ω
at points
B
B
B
and
D
D
D
intersect at point
P
P
P
. The line passing through
P
P
P
cuts out from circle chord
A
C
AC
A
C
. Through an arbitrary point on the segment
A
C
AC
A
C
a straight line parallel to
B
D
BD
B
D
is drawn. Prove that it divides the lengths of polygonal
A
B
C
ABC
A
BC
and
A
D
C
ADC
A
D
C
in the same ratio. [hide=last sentence was in Russian: ]Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
ratio
geometry
circle