MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2010 All-Russian Olympiad Regional Round
11.5
11.5
Part of
2010 All-Russian Olympiad Regional Round
Problems
(1)
acute if sin A > cos B, sin B> cos C, sin C > cos A
Source: Russian Regional Olympiad 2010 11.5
8/24/2024
The angles of the triangle
α
,
β
,
γ
\alpha, \beta, \gamma
α
,
β
,
γ
satisfy the inequalities
sin
α
>
cos
β
,
sin
β
>
cos
γ
,
sin
γ
>
cos
α
.
\sin \alpha > \cos \beta, \sin \beta > \cos \gamma, \sin \gamma > \cos \alpha.
sin
α
>
cos
β
,
sin
β
>
cos
γ
,
sin
γ
>
cos
α
.
Prove that the trαiangle is acute-angled.
geometry
acute
trigonometry
inequalities