MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1962 All-Soviet Union Olympiad
13
13
Part of
1962 All-Soviet Union Olympiad
Problems
(1)
Sequence with Recurrent Inequality
Source: 1962 All-Soviet Union Olympiad
1/15/2018
Given are
a
0
,
a
1
,
.
.
.
,
a
n
a_0,a_1, ... , a_n
a
0
,
a
1
,
...
,
a
n
, satisfying
a
0
=
a
n
=
0
a_0=a_n = 0
a
0
=
a
n
=
0
, and
a
k
−
1
−
2
a
k
+
a
k
+
1
≥
0
a_{k-1} - 2a_k+a_{k+1}\ge 0
a
k
−
1
−
2
a
k
+
a
k
+
1
≥
0
for
k
=
0
,
1
,
.
.
.
,
n
−
1
k=0, 1, ... , n-1
k
=
0
,
1
,
...
,
n
−
1
. Prove that all the numbers are negative or zero.
Sequence
algebra
Russia
inequalities