MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1966 All Russian Mathematical Olympiad
077
077
Part of
1966 All Russian Mathematical Olympiad
Problems
(1)
ASU 077 All Russian MO 1966 s=\pm a1\pm a2\pm ...\pm a_n
Source:
6/19/2019
Given the numbers
a
1
,
a
2
,
.
.
.
,
a
n
a_1, a_2, ... , a_n
a
1
,
a
2
,
...
,
a
n
such that
0
≤
a
1
≤
a
2
≤
2
a
1
,
a
2
≤
a
3
≤
2
a
2
,
.
.
.
,
a
n
−
1
≤
a
n
≤
2
a
n
−
1
0\le a_1\le a_2\le 2a_1 , a_2\le a_3\le 2a_2 , ... , a_{n-1}\le a_n\le 2a_{n-1}
0
≤
a
1
≤
a
2
≤
2
a
1
,
a
2
≤
a
3
≤
2
a
2
,
...
,
a
n
−
1
≤
a
n
≤
2
a
n
−
1
Prove that in the sum
s
=
±
a
1
±
a
2
±
.
.
.
±
a
n
s=\pm a1\pm a2\pm ...\pm a_n
s
=
±
a
1
±
a
2
±
...
±
a
n
You can choose appropriate signs to make
0
≤
s
≤
a
1
0\le s\le a_1
0
≤
s
≤
a
1
.
algebra