MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1973 All Soviet Union Mathematical Olympiad
178
178
Part of
1973 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 178 All Soviet Union MO 1973 |ax^2+bx+c|\le 1 => |cx^2+bx+a| \le 2
Source:
7/4/2019
The real numbers
a
,
b
,
c
a,b,c
a
,
b
,
c
satisfy the condition: for all
x
x
x
, such that for
−
1
≤
x
≤
1
-1 \le x \le 1
−
1
≤
x
≤
1
, the inequality
∣
a
x
2
+
b
x
+
c
∣
≤
1
| ax^2 + bx + c | \le 1
∣
a
x
2
+
b
x
+
c
∣
≤
1
is held. Prove that for the same
x
x
x
,
∣
c
x
2
+
b
x
+
a
∣
≤
2
| cx^2 + bx + a | \le 2
∣
c
x
2
+
b
x
+
a
∣
≤
2
algebra
trinomial
inequalities