MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1976 All Soviet Union Mathematical Olympiad
225
225
Part of
1976 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 225 All Soviet Union MO 1976 |a|+|b|+|c|+|d| \ge |a+d|+|b+d|+|c+d|
Source:
7/5/2019
Given
4
4
4
vectors
a
,
b
,
c
,
d
a,b,c,d
a
,
b
,
c
,
d
in the plane, such that
a
+
b
+
c
+
d
=
0
a+b+c+d=0
a
+
b
+
c
+
d
=
0
. Prove the following inequality:
∣
a
∣
+
∣
b
∣
+
∣
c
∣
+
∣
d
∣
≥
∣
a
+
d
∣
+
∣
b
+
d
∣
+
∣
c
+
d
∣
|a|+|b|+|c|+|d| \ge |a+d|+|b+d|+|c+d|
∣
a
∣
+
∣
b
∣
+
∣
c
∣
+
∣
d
∣
≥
∣
a
+
d
∣
+
∣
b
+
d
∣
+
∣
c
+
d
∣
inequalities
vector
algebra