MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1981 All Soviet Union Mathematical Olympiad
325
325
Part of
1981 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 325 All Soviet Union MO 1981 min of 4 +x^2y^4 + x^4y^2 - 3x^2y^2
Source:
7/23/2019
a) Find the minimal value of the polynomial
P
(
x
,
y
)
=
4
+
x
2
y
4
+
x
4
y
2
ā
3
x
2
y
2
P(x,y) = 4 + x^2y^4 + x^4y^2 - 3x^2y^2
P
(
x
,
y
)
=
4
+
x
2
y
4
+
x
4
y
2
ā
3
x
2
y
2
b) Prove that it cannot be represented as a sum of the squares of some polynomials of
x
,
y
x,y
x
,
y
.
polynomial
minimum
algebra
inequalities