MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1985 All Soviet Union Mathematical Olympiad
410
410
Part of
1985 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 410 All Soviet Union MO 1985 sum of |a_i - b_i| = n^2
Source:
8/5/2019
Numbers
1
,
2
,
3
,
.
.
.
,
2
n
1,2,3,...,2n
1
,
2
,
3
,
...
,
2
n
are divided onto two equal groups. Let
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a
1
,
a
2
,
...
,
a
n
be the first group numbers in the increasing order, and
b
1
,
b
2
,
.
.
.
,
b
n
b_1,b_2,...,b_n
b
1
,
b
2
,
...
,
b
n
-- the second group numbers in the decreasing order. Prove that
∣
a
1
−
b
1
∣
+
∣
a
2
−
b
2
∣
+
.
.
.
+
∣
a
n
−
b
n
∣
=
n
2
|a_1 - b_1| + |a_2 - b_2| + ... + |a_n - b_n| = n^2
∣
a
1
−
b
1
∣
+
∣
a
2
−
b
2
∣
+
...
+
∣
a
n
−
b
n
∣
=
n
2
algebra
set
absolute value