MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1987 All Soviet Union Mathematical Olympiad
462
462
Part of
1987 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 462 All Soviet Union MO 1987 (2n + 1)^n >= (2n)^n + (2n - 1)^n
Source:
8/7/2019
Prove that for every natural
n
n
n
the following inequality is held:
(
2
n
+
1
)
n
≥
(
2
n
)
n
+
(
2
n
−
1
)
n
(2n + 1)^n \ge (2n)^n + (2n - 1)^n
(
2
n
+
1
)
n
≥
(
2
n
)
n
+
(
2
n
−
1
)
n
algebra
inequalities