MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1992 All Soviet Union Mathematical Olympiad
566
566
Part of
1992 All Soviet Union Mathematical Olympiad
Problems
(1)
ASU 566 Commonwealth of Independent States 1991 x^2/(y-1) + y^2/(x-1)>= 8.
Source:
8/15/2019
Show that for any real numbers
x
,
y
>
1
x, y > 1
x
,
y
>
1
, we have
x
2
y
−
1
+
y
2
x
−
1
≥
8
\frac{x^2}{y - 1}+ \frac{y^2}{x - 1} \ge 8
y
−
1
x
2
+
x
−
1
y
2
≥
8
algebra
inequalities