5
Part of 2016 All-Russian Olympiad
Problems(2)
The last digits are zero...
Source: 2016 All-Russian Olympiad,Problem 9.5
6/7/2016
Using each of the digits exactly once,we form nine,not necassarily distinct,nine-digit numbers.Their sum ends in zeroes,where is a non-negative integer.Determine the maximum possible value of .
number theorySum
Polynomial with integer roots.
Source: All russian olympiad 2016,Day2,grade 11,P5
5/5/2016
Let be a positive integer and let be nonzero integers such that . Is it always possible to a permutation of so that the equation
\begin{align*}
a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_0=0
\end{align*}
has not integer roots?
number theoryInteger Polynomialalgebrapolynomial