MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Moscow Mathematical Olympiad
1953 Moscow Mathematical Olympiad
256
256
Part of
1953 Moscow Mathematical Olympiad
Problems
(1)
MMO 256 Moscow MO 1953 solve sum (-1)^nx(x-1)...(x - n + 1)}{n!}=0
Source:
8/9/2019
Find roots of the equation
1
−
x
1
+
x
(
x
−
1
)
2
!
−
.
.
.
+
(
−
1
)
n
x
(
x
−
1
)
.
.
.
(
x
−
n
+
1
)
n
!
=
0
1 -\frac{x}{1}+ \frac{x(x - 1)}{2!} -... +\frac{ (-1)^nx(x-1)...(x - n + 1)}{n!}= 0
1
−
1
x
+
2
!
x
(
x
−
1
)
−
...
+
n
!
(
−
1
)
n
x
(
x
−
1
)
...
(
x
−
n
+
1
)
=
0
equation
factorial
algebra