4
Problems(2)
FD _|_ BE wanted, hexagon ABCDE, AB = BC, CD = DE, EF = FA, <A=<C=90^o
Source: 2005 Oral Moscow Geometry Olympiad grades 8-9 p4
10/16/2020
Given a hexagon , in which , and angles and are right. Prove that lines and are perpendicular.(B. Kukushkin)
geometryperpendicularhexagonequal segmentsright angle
aphere inscribed into pyramid, with parallelogram base
Source: 2005 Oral Moscow Geometry Olympiad grades 10-11 p4
10/21/2020
A sphere can be inscribed into a pyramid, the base of which is a parallelogram. Prove that the sums of the areas of its opposite side faces are equal.(M. Volchkevich)
geometryparallelogrampyramidsphere