MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2000 Saint Petersburg Mathematical Olympiad
10.1
10.1
Part of
2000 Saint Petersburg Mathematical Olympiad
Problems
(1)
Prove that $x_m\neq y_n$ for all $m$ and $n$.
Source: St. Petersburg MO 2000, 10th grade, P1
4/22/2023
Sequences
x
1
,
x
2
,
…
,
x_1,x_2,\dots,
x
1
,
x
2
,
…
,
and
y
1
,
y
2
,
…
,
y_1,y_2,\dots,
y
1
,
y
2
,
…
,
are defined with
x
1
=
1
8
x_1=\dfrac{1}{8}
x
1
=
8
1
,
y
1
=
1
10
y_1=\dfrac{1}{10}
y
1
=
10
1
and
x
n
+
1
=
x
n
+
x
n
2
x_{n+1}=x_n+x_n^2
x
n
+
1
=
x
n
+
x
n
2
,
y
n
+
1
=
y
n
+
y
n
2
y_{n+1}=y_n+y_n^2
y
n
+
1
=
y
n
+
y
n
2
. Prove that
x
m
≠
y
n
x_m\neq y_n
x
m
=
y
n
for all
m
,
n
∈
Z
+
m,n\in\mathbb{Z}^{+}
m
,
n
∈
Z
+
. [I]Proposed by A. Golovanov
algebra
sequances