MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2000 Saint Petersburg Mathematical Olympiad
9.7
9.7
Part of
2000 Saint Petersburg Mathematical Olympiad
Problems
(1)
Sequences and parity
Source: St. Petersburg MO 2000, 9th grade, P7
4/22/2023
Define a complexity of a set
a
1
,
a
2
,
…
,
a_1,a_2,\dots,
a
1
,
a
2
,
…
,
consisting of 0 and 1 to be the smallest positive integer
k
k
k
such that for some positive integers
ϵ
1
,
ϵ
2
,
…
,
ϵ
k
\epsilon_1,\epsilon_2,\dots, \epsilon_k
ϵ
1
,
ϵ
2
,
…
,
ϵ
k
each number of the sequence
a
n
a_n
a
n
,
n
>
k
n>k
n
>
k
, has the same parity as
ϵ
1
a
n
−
1
+
ϵ
2
a
n
−
2
+
⋯
+
ϵ
k
a
n
−
k
\epsilon_1 a_{n-1}+\epsilon_2 a_{n-2}+\dots+\epsilon_k a_{n-k}
ϵ
1
a
n
−
1
+
ϵ
2
a
n
−
2
+
⋯
+
ϵ
k
a
n
−
k
. Sequence
a
1
,
a
2
,
…
,
a_1,a_2,\dots,
a
1
,
a
2
,
…
,
has a complexity of
1000
1000
1000
. What is the complexity of sequence
1
−
a
1
,
1
−
a
2
,
…
,
1-a_1,1-a_2,\dots,
1
−
a
1
,
1
−
a
2
,
…
,
.[I]Proposed by A. Kirichenko
algebra
Sequence
Parity