MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Saint Petersburg Mathematical Olympiad
2001 Saint Petersburg Mathematical Olympiad
11.1
11.1
Part of
2001 Saint Petersburg Mathematical Olympiad
Problems
(1)
Algebra on trigonometry
Source: St. Petersburg MO 2001, 11th grade, P1
4/24/2023
Do there exist distinct numbers
x
,
y
,
z
x,y,z
x
,
y
,
z
from
[
0
,
π
2
]
[0,\dfrac{\pi}{2}]
[
0
,
2
π
]
, such that six number
sin
x
\sin x
sin
x
,
sin
y
\sin y
sin
y
,
sin
z
\sin z
sin
z
,
cos
x
\cos x
cos
x
,
cos
y
\cos y
cos
y
,
cos
z
\cos z
cos
z
could be partitioned into 3 pairs with equal sums? [I]Proposed by A. Golovanov
algebra
trigonometry